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Abstract

In this study, the wave-induced surge motion of a twin platform of tension leg structural system was
investigated. A set of equations along with boundary conditions was derived, and solutions were obtained
analytically. In the analysis the coupling problem of a two-dimensional tension leg twin platform
interacting with a monochromatic linear wave train in an inviscid and incompressible fluid is considered.
The problem was considered as a combination of the scattering and radiation problem. These two
boundary-value problems were first solved independently and then combined together to resolve for all
unknowns. The analysis was focused on the wave-induced surge motion of the twin platform and the
reflection coefficient when the multi-interactions among waves, platform structure and the tension legs were
taken into account. From the analytical results, it was found that ignoring the interaction effect between the
tether and waves for a twin platform system, it tends to overestimate the wave-induced response in general.
It was also realized that the behavior of the tension-leg twin platform was significantly influenced by
dimensional factors of the platform system such as the dimension of each platform and the spacing between
two platforms.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Tension-leg platforms (TLPs) are usually used as working station for oil exploration in deep
water. Lately, the application on this structural system is even wider such as the floating
breakwater system and the fish-farming cage system. The TLPs are constituted of a semi-
submerged structure (pontoon) and pre-tensioned tethers anchored to the ocean bed. The
difficulty in the dynamic analysis of the TLPs is due to the non-linearity of the TLP motion and
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the boundary conditions on the free surface and on the structural bottom [1]. For this problem the
linear boundary-value problem is incorporated into a scattering problem and a radiation problem
[2]. This problem was solved by a numerical method since 1970s [3,4], and also studied in
experimental test [4]. An analytical solution was proposed later and demonstrated by Lee and Lee
[5], where the surge motion of a single platform with pre-tensioned tethers was calculated.
In that study, however, the elasticity of tethers was only implied and the motion of tethers was

also simplified as on-line rigid-body motion proportional to the top platform. Thus, both the
material property and the mechanical behavior for the tether incorporated in the TLP system were
ignored. When this simplification was applied, no matter what material was used or what the
dimension of the tethers was, the dynamic response of the platform would remain the same in
terms of the vibration mode, periods and the vibration amplitude. This is not true for the actual
engineering application. Therefore, in a more recent study [6], both the property and the
dimension of the tether material were considered and the equation of motion was modified with
the corresponding material parameters. The results showed that the dynamic behavior of both the
tether of TLP and the platform itself is closely related to the material property and the tether
dimension while the influence of wave properties remains constant.
In the actual engineering application a twin platform system is more practical such as platforms

with two separate pontoons or similar devices under the deck, however, most analyses
aforementioned concentrated on the traditional single-platform system. Even though a twin-
platform system might be simplified into a single-platform system, the analytical results are
greatly subjected to the dimensional influence of the platform structural system. The
determination of the dimensional parameters could affect the platform behavior and how a
twin-platform system could be simplified by a single-platform solution. For the problems of a
tension-leg twin-platform structural system, the analytical solutions without considering the
interactions between wave and tension legs were obtained lately [7]. In that study some parameter
effects on the surge motion were also discussed. However, for more realistic engineering practice,
solutions accounting for the multi-interactions among waves, platform structure and the tension-
leg tethers will be necessary. Therefore, it is the purpose of this study to find an appropriate
method that may more accurately describe the behavior of the tension-leg twin-platform
structural system when subjected to the multi-interactions among waves, platform and tension-leg
tethers. Furthermore, the factors that may influence the behavior of this twin-platform system
such as the platform spacing, platform dimensions and water-related properties are all under
consideration for the analysis.
Generally a 2-D approach was applied to simulate a 3-D TLP problem [4] even though the 3-D

system was practiced. However, for a platform system with an obvious larger third dimension
such as a long floating breakwaters or multi-purpose platforms, the wave incident normal to the
long axis will be the concern while the behavior in the third direction is much less important. Thus
a 2-D approach will be appropriate to simulate the motion of this 3-D system. In this study, based
on previous works [5–8] a set of equations and corresponding boundary conditions were derived
and then solved analytically. These equations were combined into the equation of motion for the
tether and the equation for the platform motion and then solved simultaneously to obtain the flow
field, platform responses and the tether motion. The material properties of tethers were taken into
account and the region of water was separated into five parts according to the actual twin-
platform geometry. The analysis was focused on the reflection coefficient and the wave-induced
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drag surge motion of the platform. The comparison was also made for the platform motion
between the twin-platform system with and without accounting for the tether–wave interactions.
In addition to the wave-related parameters, the dimensional effect of the twin-platform structure
was examined and presented in numerical examples. From the analytical results, it was found that
the behavior of the tension-leg twin-platform system was not only significantly influenced by the
dimensional parameters of the platform such as the dimension of each single platform and the
spacing between two platforms but also by the tether–wave interactions. It was also realized from
the numerical results that similar to the single-platform case [8], the interaction of tether and
waves reduces the platform motion to a great deal. When the twin-platform is located in deep
water or the platform has a shallow draft or small dimension, the engineering design and
calculation without considering the tether–wave interaction effect may significantly overestimate
the platform responses. Additionally, a phenomenon similar to the water oscillations in a basin
was also studied for this twin-platform structural system as incident waves reflect in between two
platforms of the system. It was observed that the drags induced from the interaction effect of the
twin-platform structural system could also influence the water oscillations between the platforms.

2. General wave theory

For the inviscid and incompressible fluid and irrotational flow, a single-valued velocity
potential f can be defined as

u ¼ �rf; ð1Þ

where u is the velocity potential and r is the gradient operator. The velocity potential satisfies the
Laplace equation

r2f ¼ 0 ð2Þ

and the Bernoulli equation in the flow field as

�
@f
@t

þ
1

2
rfrfþ

p

rw

þ gz ¼ 0; ð3Þ

where p is the pressure, rw the water density, g the gravitational constant, and z the water depth.
The non-linear term in Eq. (3) can be ignored when we deal with linear small amplitude wave, and
assume that the wave height is small compared to the wavelength and water depth.
A 2-D tension-leg twin-platform system interacting with a monochromatic small amplitude

wave propagating in the +x direction was considered here as shown in Fig. 1. The waveform and
the associated velocity potential are given accordingly as

ZIs ¼ �iAie
�ðK1xþistÞ ð4Þ

and

fi ¼
Aig

s
cos½K1ðz þ hÞ�
cosðK1hÞ

e�ðK1xþistÞ; ð5Þ

where Ai is the wave amplitude, g is the gravitational constant and h is the water depth. s ¼ 2p=T

is the angular frequency with period T. K1 ¼ �ik and k ¼ 2p=L is the wave number with
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wavelength L. K1 satisfies the dispersion relation given by

s2 ¼ gK1 tanðK1hÞ: ð6Þ

3. Tension-leg twin-platform system

In the platform system, the motion of the structure induced by the small amplitude incident
wave is assumed to be small. The wave-induced structural motion can be solved from the imposed
boundary problem. Due to the linearity of the problem, the problem can be incorporated into a
scattering and a radiation problem [9]. The wave force calculated from the scattering problem
provides the force function in the radiation problem, and the forced oscillation then generates
outgoing waves.
As is shown in Fig. 1, two platforms (or two single pontoons submerged under the platform)

were connected by a member of rigid body in between and the whole flow field under the twin
platform system was divided into five regions by four artificial boundaries at x ¼ �1� b; �1, þl

and l þ b: In region I, �Noxo� l � b; the total velocity potential fI consists of velocity
potentials of incident waves fi; scattered waves fIs and radiated waves fIw: In the other regions
the total velocity potential consists of velocity potentials of scattered waves and radiated waves
such as in region II, �l � boxo� l; fII consists of fIIs and fIIw; in region III, �loxoþ l; fIII
consists of fIIIs and fIIIw; in region IV, loxol þ b; fIV consists of fIVsand fIVw; and in region V,
l þ boxoN; fV consists of fVs and fVw: The subscript s denotes the scattering problem and w

denotes the radiation (wave making) problem. All of the velocity potentials satisfy the Laplace
equation. On the four artificial boundaries, free surface of the water, seabed and the bottom face
of the platform, the kinematic boundary conditions must be satisfied and the dynamic boundary

Fig. 1. Illustration for the problem of the tension leg twin-platform system.
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conditions also must be satisfied on the four artificial boundaries and the free surface.
Furthermore, on the infinite boundary �N in region I and þNin region V, the Sommerfeld’s
radiation condition is satisfied to secure unique solutions

lim
x-7N

@f
@x

7
1

cw

@f
@t

� �
¼ 0; ð7Þ

where cw is the celerity of the waves.

3.1. Scattering problem

In the scattering problem, the incident wave is considered as being diffracted by a fixed
structure. The corresponding boundary-value problem is shown in Fig. 2(a). Applying the method
of the separation of variables, matching the horizontal boundary conditions in each region and
applying the Sommerfeld’s condition to regions I and V, the velocity potential and the
corresponding surface elevation Z in each region can be found as given below.
For region I:

fIs ¼
XN
j¼1

AIsjg

s
cos½Kjðz þ hÞ�
cosðKjhÞ

e½KjðxþlþbÞ�ist�; ð8Þ

ZIs ¼ �i
XN
j¼1

AIsje
½KjðxþlþbÞ�ist�: ð9Þ

For region V:

fVs ¼
XN
j¼1

AVjg

s
cos½Kjðz þ hÞ�
cosðKjhÞ

e�½Kjðx�l�bÞþist�; ð10Þ

ZVs ¼ �i
XN
j¼1

AVsje
�½Kjðx�l�bÞþist�; ð11Þ

where the eigenvalues Kj can be solved from the dispersion equation

s2 ¼ gKj tanðKjhÞ; ð12Þ

where

K1 ¼ �ik; j ¼ 1;

ð2j � 3Þ
p
2
oKjhoðj � 1Þp; jX2: ð13Þ

For region II:

fIIs ¼
ig

s
AIIsP1

x

l þ b
þ AIIsN1

� �"
cosKII1ðz þ hÞ

þ
XN
j¼2

ð�1Þj�1ðAIIsPje
�KIIjðxþlþbÞ þ AIIsNje

KIIjðx�lÞÞ cosKIIjðz þ hÞ

#
e�ist: ð14Þ
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For region IV:

fIVs ¼
ig

s
AIVsP1

x

l þ b
þ AIVsN1Þ cosKII1ðz þ hÞ

� �"

þ
XN
j¼2

ð�1Þj�1ðAIVsPje
�KIIjðxþlÞ þ AIVsNje

KIIjðx�l�bÞÞcosKIIjðz þ hÞ

#
e�ist; ð15Þ

Fig. 2. (a) Illustration of the scattering boundary-value problem. (b) Illustration of the radiation boundary-value

problem.
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where eigenvalue KIIj can also be obtained from the dispersion equation

KIIj ¼
ðj � 1Þp
h � d

; jX1; ð16Þ

In region III, due to the constraint of its two vertical boundaries, Sommerfeld’s radiation
conditions are not required to be satisfied. The velocity potential fIIIs and the free surface
elevation ZIIIs are given by

fIIIs ¼
XN
j¼1

g

s
AIIIsPje

�KjðxþlÞ þ AIIIsNje
Kjðx�lÞ� 	cosKjðz þ hÞ

cosKjh
e�ist ð17Þ

and

ZIIIs ¼ �i
XN
j¼1

AIIIsPje
�KjðxþlÞ þ AIIIsNje

Kjðx�lÞ� 	
e�ist; ð18Þ

where the eigenvalues Kj are similar to those obtained in regions I and V.
In Eqs. (8), (10), (14), (15) and (17), there are totally 8N unknowns, where N is the number of

terms used in the series, AIsj; AIIsPj; AIIsNj; AIIIsPj; AIIIsNj; AIVsPj; AIVsNj and AVsj: By applying the
kinematic and dynamic boundary conditions on four artificial boundaries for regions II and IV,
where x ¼ �l � b; �l; þl and l þ b; and taking the advantage of orthogonality of functions, the
aforementioned 8N unknowns can be solved by 8N set of equations simultaneously. Both the
kinematic and dynamic boundary conditions are illustrated in Fig. 3 and also written as follows
for aX1:
Kinematic boundary condition (KBC) on x ¼ �l � b between regions I and II:

@ fi þ fIs

 �

@x
¼ 0; 0ozo� d ð19Þ

and

@ fi þ fIs

 �

@x
¼

@fIIs
@x

; �hozo� d: ð20Þ

Dynamic boundary condition (DBC) on x ¼ �l � b between regions I and II:

@ fi þ fIs

 �

@t
¼

@fIIs
@t

; �hozo� d: ð21Þ

KBC on x ¼ �l between regions II and III:

@fIIIs
@x

¼ 0; 0ozo� d: ð22Þ

and

@fIIs
@x

¼
@fIIIs
@x

; �hozo� d: ð23Þ

DBC on x ¼ �l between regions II and III:

@fIIs
@t

¼
@fIIIs
@t

; �hozo� d: ð24Þ
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KBC on x ¼ l between regions III and IV:

@fIIIs
@x

¼ 0; 0ozo� d: ð25Þ

and

@fIIIs
@x

¼
@fIVs

@x
; �hozo� d: ð26Þ

DBC on x ¼ l between regions III and IV:

@fIIIs
@t

¼
@fIVs

@t
; �hozo� d: ð27Þ

KBC on x ¼ l þ b between regions IV and V:

@fIVs

@x
¼ 0; 0ozo� d ð28Þ

and

@fIVs

@x
¼

@fVs

@x
; �hozo� d: ð29Þ

DBC on x ¼ l þ b between regions IV and V:

@fIVs

@t
¼

@fVs

@t
; �hozo� d: ð30Þ

Fig. 3. The kinematic and dynamic boundary conditions on the scattering boundary-value problem.
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By employing the orthogonality of the velocity potential functions the boundary conditions can
be further derived as eight equations on the four boundaries in terms of the 8N unknowns to be
solved for velocity potential as shown by Eqs. (A.1)–(A.8) in Appendix A.

3.2. Radiation problem

In the radiation problem, the structure is considered to be forced in motion by the wave force
induced by incident waves and scattered waves and then the structure motion results in waves
propagating in the x direction similar to a wave maker. The corresponding boundary-value
problem is illustrated in Fig. 2(b). The displacement of the surge motion of the platform is
given by

x ¼ Se�ist ð31Þ

where S is the unknown amplitude of the surge motion. By means of the method similar to the
scattering problem, in this radiation problem, the velocity potential and the corresponding
elevation of free surface are written as follows:
For region I:

fIw ¼
XN
j¼1

AIwjg

s
cos½Kjðz þ hÞ�
cosðKjhÞ

e½KjðxþlþbÞ�ist�; ð32Þ

ZIw ¼ �i
XN
j¼1

AIwje
½KjðxþlþbÞ�ist�: ð33Þ

For region II:

fIIw ¼
ig

s
AIIwP1

x

l þ b
þ AIIwN1

� ��
cosKII1ðz þ hÞ

þ
XN
j¼2

ð�1Þj�1ðAIIwPje
�KIIjðxþlþbÞ þ AIIwNje

KIIjðx�lÞÞ cosKIIjðz þ hÞ
�
e�ist: ð34Þ

For region III:

fIIIw ¼
XN
j¼1

g

s
AIIIwPje

�KjðxþlÞ þ AIIIwNje
Kjðx�lÞ� 	cos½Kjðz þ hÞ�

cosðKjhÞ
e�ist; ð35Þ

ZIIIw ¼ �i
XN
j¼1

AIIIwPje
�KjðxþlÞ þ AIIIwNje

Kjðx�lÞ� 	
e�ist: ð36Þ

For region IV:

fIVw ¼
ig

s
AIVwP1

x

l þ b
þ AIVwN1

� ��
cosKII1ðz þ hÞ

þ
XN
j¼2

ð�1Þj�1ðAIVwPje
�KIIjðxþlÞ þ AIVwNje

KIIjðx�l�bÞÞ cosKIIjðz þ hÞ
�
e�ist: ð37Þ
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For region V:

fVw ¼
XN
j¼1

AVwjg

s
cos½Kjðz þ hÞ�
cosðKjhÞ

e� Kj x�l�bð Þþist½ �; ð38Þ

ZVw ¼
XN
j¼1

AVwje
� Kj x�l�bð Þþist½ �; ð39Þ

where the eigenvalues Kj remain the same as those in the scattering problem. In Eqs. (32), (34),
(35), (37) and (38) there are totally 8N unknowns, AIwj; AIIwPj; AIIwNj; AIIIwPj ; AIIIwNj; AIVwPj;
AIVwNj and AVwj: Similarly, by applying the kinematic and dynamic boundary conditions on four
artificial boundaries of regions II and IV, and taking the advantage of orthogonality of the
functions, the 8N unknowns can be solved by 8N set of equations simultaneously. Boundary
conditions associated with the radiation problem are illustrated in Fig. 4 and equations derived
from the boundary conditions are written as follows for aX1:
KBC on x ¼ �l � b between regions I and II:

�
@fIw
@x

¼
dx
dt
; 0ozo� d ð40Þ

and

@fIw
@x

¼
@fIIw
@x

; �hozo� d: ð41Þ

Fig. 4. The kinematic and dynamic boundary conditions on the radiation boundary-value problem.
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DBC on x ¼ �l � b between regions I and II:

@fIw
@t

¼
@fIIw
@t

; �hozo� d: ð42Þ

KBC on x ¼ �l between regions II and III:

@fIIIw
@x

¼
dx
dt
; 0ozo� d ð43Þ

and

@fIIw
@x

¼
@fIIIw
@x

; �hozo� d: ð44Þ

DBC on x ¼ �l between regions II and III:

@fIIw
@t

¼
@fIIIw
@t

; �hozo� d: ð45Þ

KBC on x ¼ l between regions III and IV:

�
@fIIIw
@x

¼
dx
dt
; 0ozo� d ð46Þ

and

@fIIIw
@x

¼
@fIVw

@x
; �hozo� d: ð47Þ

DBC on x ¼ l between regions III and IV:

@fIIIw
@t

¼
@fIVw

@t
; �hozo� d: ð48Þ

KBC on x ¼ l þ b between regions IV and V:

�
@fVw

@x
¼
dx
dt
; 0ozo� d ð49Þ

and

@fIVw

@x
¼

@fVw

@x
; �hozo� d: ð50Þ

DBC on x ¼ l þ b between regions IV and V:

@fIVw

@t
¼

@fVw

@t
; �hozo� d: ð51Þ

By employing the orthogonality of the velocity potential functions the boundary conditions can
be further derived into equations as shown by Eqs. (A.9)–(A.16) of Appendix A, in terms of the
form of velocity potential that includes 8N unknowns to be solved.
As was observed in these 8N series of equations, in addition to the aforementioned 8N set of

unknowns, due to the displacement of the platform, there is one more unknown S, the amplitude
of the surge motion, to be solved. Therefore, to solve for the amplitude S one additional set of
equation, the equation of the surge motion of the platform, is required.
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3.3. Motion of the platform

The equation of motion of the platform derived from Newton’s second law, after neglecting the
higher order non-linear term x2 resulted from the dynamic tension of the tether motion, can be
written as

M
d2x
dt2

þ K	x ¼ Fw þ FD1 þ FD2; ð52Þ

where M is the mass of the platform system, Fw is the horizontal wave force exerting on the
platform and K	 represents the equivalent stiffness of the platform system induced by the pre-
tensioned tethers [6]. The equivalent stiffness of the platform system is given by

Kn ¼
2rwgb

c
ðd � d0Þ

m
mþ 1

� �
; ð53Þ

where c ¼ h � d; d0 ¼ M=ð2rwbÞ; d0 and d are drafts of the structure before and after
applying the pre-tension force. m is the proportional stiffness parameter defined as the ratio
between the tether stiffness and the buoyancy force of the platform submerged in the water of unit
depth.
For the wave force, by applying the linearized Bernoulli equation, the wave force Fw can be

obtained through the integration of the total hydrodynamic pressure over the vertical surfaces of
the structure on boundariesx ¼ �ðl þ bÞ; �l; þl and ðl þ bÞ; and given by

Fw ¼ rw

Z 0

�d

@fI
@t

x¼�l�bj þ
@fIII
@t

x¼þlj �
@fIII
@t

x¼�lj �
@fV
@t

x¼þlþbj
� �

dz: ð54Þ

FD1=D2 are forces exerting on two tether legs due to the drag and inertial effect induced by waves,
which may be presented by employing the modified Morison’s equation [10] since the diameter of
the tether D is small compared to the wavelength as

FD1=D2 ¼
Z �d

�h

1
2

�
rwDCD u � ’wð Þðu � ’wÞ þ 1

4
prwD2Cmð ’u � .wÞþ1

4
prwD2 .w

	
dz; ð55Þ

where w is the horizontal deflection of the tether, while CD and Cm are the coefficients
corresponding to the drag and inertial effect respectively. By applying Lorent’s hypothesis of
equivalent work [11] and assuming that the linear drag consumes the same energy within one wave
period as that of non-linear drag, a linear drag coefficient R	

D can be defined as

Rd	 ¼

R�d

�h

R T

0 f½0:5rwDCd ju � ’wjðu � ’wÞ�ðu � ’wÞg dt dzR�d

�h

R T

0 ½rwDs u � ’wð Þ u � ’wð Þ� dt dz
: ð56Þ

After substitution for the non-linear drag terms, the forces on the tethers are given as

FD1=D2 ¼
Z �d

�h

rwDsR	
Dðu � ’wÞ þ 1

4prwD2Cmð ’u � .wÞ
�

þ1
4prwD2 .w

	
dz: ð57Þ

For the application of force, FD1=D2; the velocity and acceleration for both the fluid and the tether
must be obtained first. However, due to the interactions among the wave, platform structure and
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tethers, the force, FD1=D2; will be applied in terms of the parameters that are to be solved
simultaneously together with the structural motion and the flow field. Furthermore, the tether
motion w must also be realized through solving the equation of motion for the tethers subjected to
wave forces.

3.4. Motion of the pre-tension tethers

The equation of motion for each pre-tension tether subjected to the wave-induced forces and
surge motion of the top platform can be written as

r
@2w
@t2

þ C
@w
@t

� Tn @
2w
@z2

¼ fD; ð58Þ

where r is the mass of unit length of tether, Tn is the pre-tension force in the platform system and
C is the damping coefficient of unit length of the tether. Similarly, the wave force exerted on the
unit length of the tether is obtained through Morison’s equation for small body, while the relative
motion between the fluid and the tether is accounted for. As is presented in Eq. (55) and then
modified in Eq. (57) without the integration along the water depth, the wave force, fD; on unit
length of the tether is shown as

fD ¼ rwDsRdnnðu � ’wÞ þ 0:25prwD2Cmð ’u � .wÞ þ 0:25prwD2 .w; ð59Þ

where

Rd		 ¼

R T

0 f½0:5rwDCd ju � ’wjðu � ’wÞ�ðu � ’wÞg dtR T

0 ½rwDsðu � ’wÞðu � ’wÞ� dt
:

After substitution of Eq. (59), Eq. (58) can be rewritten in the form as

rþ 0:25prwD2 Cm � 1ð Þ
� 	@2w

@t2
þ C þ RdnnrwDs

 �@w

@t
� Tn@

2w
@z2

¼ 0:25prwD2Cm ’u þ RdnnrwDsu: ð60Þ

The velocity of fluid in the equation is obtained from the potential, as was obtained in the large-
body problem combined with the scattering and the radiation problem, thus in region II u ¼
�@fII=@x; in region VI u ¼ �@fVI=@x and ’u ¼ @u=@t: Substituting u and ’u in terms of potential
derivatives into Eq. (60) we have the equation of motion for the tether in region II as

rþ 0:25prwD2 Cm � 1ð Þ
� 	@2w

@t2
þ C þ RdnnrwDs

 �@w

@t
� Tn@

2w
@z2

¼ � 0:25prwD2Cmg þ iRdnngrwD

 � AIIs=wP1

l þ b
cosKII1 z þ hð Þ

�

þ
XN
n¼2

�1ð Þn�1 �KIInAIIs=wPne
�KIInðx1þlþbÞ þ KIInAIIs=wNne

ðx1�lÞKIIn
� 	

cosKIIn z þ hð Þ
�
e�ist

ð61Þ
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and the equation of motion for tether in region VI as

½rþ 0:25prwD2ðCm � 1Þ�
@2w
@t2

þ C þ R		
d2rwDs


 �@w
@t

� T	@
2w
@z2

¼ �½0:25prwD2Cmg þ iR		
d1 
 grwD�

(
AIVs=wP1

l þ b
cosKII1ðz þ hÞ

þ
XN
n¼2

�1ð Þn�1 �KIVnAIVs=wPne
�KIIn x2þlð Þ þ KIVnAIVs=wNne

x2�l�bð ÞKIIn
� 	

cosKIVn z þ hð Þ

)
e�ist: ð62Þ

The motion of the tether at the joint connected to the platform structure will be same as the
motion of the platform, that was assumed to be harmonic with amplitude S and frequency s, as
wð�d; tÞ ¼ Se�ist; and on the sea bed the motion is restrained thus, wð�h; tÞ ¼ 0: Assuming that the
motion of the tether is in the same harmonic form as the platform wðz; tÞ ¼ ZðzÞe�ist; and
substituting back in the equation of motion, a reduced equation of motion for the tether can be
obtained such as the tether in region II given by

Tnd
2Z

dz2
þ f½rþ 0:25prwD2ðCm � 1Þ�s2 þ ðC þ RdnnrwDsÞðisÞ2gZðzÞ

¼ ð0:25prwD2Cmg þ iRdnngrwDÞ

(
AIIs=wP1

b
cosKII1ðz þ hÞ

þ
XN
n¼2

ð�1Þn�1ð�KIInAIIs=wPn þ KIIs=wNne
�2bKIInÞ cosKIInðz þ hÞ

)
ð63Þ

along with reduced boundary conditions as

Zð�dÞ ¼ S;

Zð�hÞ ¼ 0:

(

After solving the equation the relationship between the tether motion and the flow field is
established such as the tether in region II is given by

w z; tð Þ ¼ C1e
az þ C2e

�az þ
XN
n¼1

an cosKIIn z þ hð Þ

" #
e�ist; ð64Þ

where the coefficients a, C1, C2 and an are related to the tether behavior in region II. A similar
equation for the tether in region VI can also be obtained with coefficients an; C	

1 ; C	
2 and a	n: These

parameters are all defined and listed in Appendix B.

3.5. Complete equation of motion for platform structure

By substituting the velocity potentials of regions I, III and V into Eq. (54) and then substituting
Eq. (54) and (57) back into Eq. (52), the complete equation of motion for the platform that takes
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account of the multi-interaction effects can be written as

M
d2x
dt2

� r
Z 0

�d

@fIw
@t

x¼�l�bj þ
@fIIIw
@t

x¼þlj �
@fIIIw
@t

x¼�l �
@fVw

@t
x¼lþbj

����
� �

dz þ K	x

¼ r
Z 0

d

@ðfi þ fIs
@t

x¼�l�bj þ
@fIIIs
@t

x¼lj �
@fIIIs
@t

x¼�l �
@fVs

@t
x¼lþbj

����
� �

dz

þ rwDs
Z �d

�h

Rd1 �
@fIIs
@x

x¼x1�l�b

��� �
dz þ rwDs2 0:25pD Cm � 1ð Þ þ iR	

d1


 �
l1 x¼x1�l�b

��
þ rwDs

Z d

�h

Rd1 �
@fIIw
@x

x¼x1�l�b

��� �
dz

þ rwDs
Z �d

�h

Rd2 �
@fIVs

@x
x¼x2þlþb

��� �
dz þ rwDs2 0:25pD Cm � 1ð Þ þ iR	

d2


 �
l2 x¼x2þlþb

��
þ rwDs

Z d

�h

Rd2 �
@fIVw

@x
x¼x2þlþb

��� �
dz; ð65Þ

where Rd1=d2 ¼ Rn

d1=d2 � 0:25iDpCm; parameters l1 and l2 are given in Appendix C. In the
equation, the potential terms with subscript w represent the effect induced from radiated waves
while terms with subscript s denote the scattered wave effect. After carrying out the integration
and rearrangement, the equation can further be expressed in terms of coefficients of potential and
platform amplitudes as

� rW

XN
n¼1

�igð Þ
cosKnh

Z0
n

� �" #
AIwn � B1½ �AIIwP1

�
XN
n¼2

ðGne
�KIIn x1þlþbð Þ � bGne

�KIIn x1þlþbð ÞÞ

" #
AIIwPn

þ
XN
n¼2

ðGne
KIIn x1�lð Þ � bGne

KIIn x1�lð ÞÞ

" #
AIIwNn

� rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �
ðe�2lKn � 1Þ

" #
AIIIwPn

� rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �
ð1� e�2lKnÞ

" #
AIIIwNn � B	1

� 	
AIVwP1

�
XN
n¼2

ðG	
ne

�KIIn x2þlð Þ � b	G	
ne

�KIIn x2þlð ÞÞ

" #
AIVwPn

þ
XN
n¼2

ðG	
ne

KIIn x2�l�bð Þ � b	G	
ne

KIIn x2�l�bð ÞÞ

" #
AIVwNn
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þ rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �" #
AVwn þ K � s2M � ðbQ þ b	Q	Þ

h i
S

¼ rw

�iAig

cosK1h
eK1b Z0

1

� �� �

þ rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �" #
AIsn þ B1½ �AIIsP1

þ
XN
n¼2

ðGne
�KIIn x1þlþbð Þ � bGne

�KIIn x1þlþbð ÞÞ

" #
AIIsPn

�
XN
n¼2

ðGne
KIIn x1�lð Þ � bGne

KIIn x1�lð ÞÞ

" #
AIIsNn

þ rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �
ðe�2lKn � 1Þ

" #
AIIIsPn

þ rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �
ð1� e�2lKnÞ

" #
AIIIsNn þ B	1

� �
AIVsP1

þ
XN
n¼2

ðG	
ne

�KIIn x2þlð Þ � b	G	
ne

�KIIn x2þlð ÞÞ

" #
AIVsPn

�
XN
n¼2

ðG	
ne

KIIn x2�l�bð Þ � b	G	
ne

KIIn x2�l�bð ÞÞ

" #
AIVsNn

� rW

XN
n¼1

ð�igÞ
cosKnh

Z0
n

� �" #
AVsn; ð66Þ

where the parameters b; bn;Q;Qn;Gn;Gn
n; B1; B

n
1;Gn and Gn

n are also presented in Appendix C. With
Eq. (66) and Eqs. (A.9)–(A.16) derived from Eqs. (40)–(51), the aforementioned 8N+1 unknowns
in the radiation problem can be solved simultaneously. By substituting these solutions back into
Eqs. (A.1) to (A.8), which were derived from Eqs. (19) to (30), the dragged surge motion of the
twin platform, the velocity potential, the corresponding elevation of the free surface in each region
and the velocity of the flow can also be calculated when the multi-interactions among waves,
platform and the pretension tethers are all taken into consideration.

4. Numerical results and discussions

To demonstrate the analytical solution, numerical examples are presented in this section. Since
the analytical solution is in an infinite series form, the convergence of the solution was also
demonstrated and discussed. As was mentioned in the Introduction, the twin-platform system is
more close to the practical application even though the analysis is more challenging. Therefore, in
the numerical examples a comparison between the single- and the twin-platform system was also
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made when the spacing between two platforms of the twin-platform system was reduced thus
becoming similar to a single-platform system. The platform responses due to coupled interactions
among the waves, platform and the tethers were obtained and compared to the cases without
tether–wave interactions.
Influences resulting from the structural factors such as the spacing between two platforms,

platform dimensions and the influence of water depth, were discussed in the examples, while the
material related parameters remained constant, which were discussed in the single-platform
analysis. The influence from the mass and the draft of the platform was also presented and
discussed shortly to examine the similarity to the single-platform system. The analysis was focused
on the amplitude of the surge motion of the platform and the reflection coefficient of the wave,
both corresponding to the dimensionless frequency of incident waves. Furthermore, the resonant
phenomenon for the free water surface between two platforms similar to harbor seiching was also
observed and discussed.

4.1. The convergence and consistency of the solution

Two tests were performed here for the analytical solutions of this twin-platform system, namely
the convergence of the series solution and the consistency of the solution when reduced to a single-
platform system. The convergence test for appropriate wave modes in the series solution was
performed when related factors such as the incident wave height, wave period, water depth and
the geometry of the structure were taken into account. Assuming that the convergent error is set
to be 5%, for wave periods ranging from 2 to 20 s, the convergence of the reflection coefficient Kr

corresponding to the number of wave modes in the series solution is shown in Fig. 5(a) and (b).
The parameters related to the structure and water depth are also shown in the figure. It shows that
after 15, mostly less than 10, wave modes, all of the reflection coefficients approach a value within
the range of the convergent error.
Next, consistency between the single- and twin-platform solution was examined when the

spacing between two platforms vanished, l=0. Fig. 6(a) shows the dimensionless amplitude of the
surge motion of the twin-platform system corresponding to the dimensionless frequency of the
incident wave, s2g=h; applied to the platform system located in the water 30.0m deep. As was
shown, the responses resulting from twin-platform and single-platform systems almost merged
into one. Fig. 6(b) presented the reflection and transmission coefficients of the wave for both the
reduced twin- and single-platform systems corresponding to the frequency of the incident wave.
Again, both the reflection and the transmission coefficients were matched into the same curve for
the two platform systems. Therefore, the solution for the twin-platform system is consistent with
that of the single platform and able to solve a single-platform system problem when the multi-
interactions among waves, platform and strained tethers are taken into account.

4.2. Influence of twin-platform parameters on the structural motion

4.2.1. The spacing effect on the twin-platform drag surge motion

The tether drag effect corresponding to the influence of spacing between two platforms in the
twin-platform system was examined here. In the numerical example the dimension of each
platform remained constant while the spacing between them varied. Fig. 7(a) shows the
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dimensionless amplitude of the platform drag surge motion while Fig. 7(b) is the response
comparison to the platform without tether–wave interactions. The corresponding dimension and
related parameters are also presented in the figure. In Fig. 7(a) both the amplitude of the drag
surge motion and the resonant period of the response were increased corresponding to the
increase of the spacing between two platforms. However, when the spacing reached 8m, ratio
b/l=0.5, the amplitude seemed to converge to a constant. Compared to the case where the tether–
wave interactions are not taken into account, as observed from Fig. 7(b) the trend of the
amplitude variation corresponding to the frequency of the incident waves is quite similar to each
other except that the amplitude was greatly reduced from the tether–wave interaction effect.

4.2.2. The dimension effect on the twin-platform drag surge motion
The dimension of each single platform for the twin-platform system was varied for the

examination of the influence on the drag surge motion of the platform system. Fig. 8(a) is the

Fig. 5. The convergence of the reflection coefficient corresponding to the number of mode for the series solution. (a)

Wave period from 2 to 10 s. (b) Wave period from 12 to 20 s.
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reflection coefficient of the platform system corresponding to the dimensionless frequency of the
incident wave. Influenced by the tether–wave interactions the maximum value of the coefficients is
not a unit value anymore such as the case without tether–wave interactions but varied such that
corresponding to the increase of the platform dimension the reflection coefficients are increased.
Fig. 8(b) shows comparisons of dimensionless amplitude of platform motions between platforms
with and without considering the tether–wave interactions. For the case without considering the
tether effect, corresponding to the increase of the dimension of each platform, both the amplitude
and the resonant period of the platform surge motion decreased significantly. However, for the
case where the tether effect is considered, corresponding to the increase of the platform
dimension, the amplitude only reduced slightly. The difference in the amplitude between two cases
is larger when the platform dimension is smaller. It is because the correspondingly smaller system
stiffness would allow a larger vibration on the tether, which due to the tether–wave interaction
would damp more energy and then reduce the platform motion more significantly.

Fig. 6. The consistency for the solution between the single platform and twin-platform system. Comparison of the

dimensionless response amplitude of the platform. Comparison of the reflection and transmission coefficients.
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4.2.3. The draft effect on the twin-platform drag surge motion
An examination on the influence of the submerged depth of the structure d, when the tether–

wave interaction effect was accounted for, was carried out here. The platform draft not only
affects the eigenvalue of the solution but also the equivalent stiffness Kn: A twin platform each
4.0m wide was analyzed while the after-tension draft of the platform was varied from 1.0 to 7.0m.
Similar to the previous analysis, Fig. 9(a) and (b) shows the reflection coefficients for the wave and
the comparison of the dimensionless amplitudes for platform motions with and without
considering the tether–wave interactions corresponding to the dimensionless frequency of the
incident waves. The related parameters of the system are also shown in the figure. As shown in
Fig. 9(a), influenced by the tether-wave interactions corresponding to the increase of the draft, the
reflection coefficient becomes larger while the resonant frequency becomes smaller.
It is also observed in Fig. 9(b) that corresponding to the increase of the draft of the platform,

for the platform with the tether–wave interaction being taken into account, the amplitude

Fig. 7. The dragged surge motion response for the twin-platform system with respect to the variation of spacing

between two platforms l. (a) The dimensionless amplitude of the dragged surge motion corresponding to the wave

frequency. (b) The motion comparison between the platforms with and without tether–wave interactions.
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increased and then dropped slightly after up to a certain value. This phenomenon is quite different
from the case where the tether–wave interactions are not considered, where the increase of the
platform draft normally enhances the stiffness and thus reduces the platform motion. However,
with the consideration of tether–wave interactions, when the tether vibration is larger the damping
due to the tether drag will be more effective and thus the reduction on the platform motion is
more significant. Once the platform draft increased, corresponding to the reduction of the tether
vibration, the damping became less effective and then the tether drag effect became gradually
negligible. Therefore, the motion of the platform with deeper draft will be less influenced by the
tether–wave interaction, while the motion of platform with smaller draft may be significantly
overestimated when this interaction was ignored.

4.2.4. The mass effect on the twin-platform drag surge motion
For the mass variation effect Fig. 10 shows the comparison of dimensionless response

amplitude of motions between platforms with and without considering the tether–wave

Fig. 8. The dragged surge motion response for the twin-platform system with respect to the variation of platform

dimension b. (a) The reflection coefficient corresponding to the wave frequency. (b) The motion comparison between

the platforms with and without tether–wave interactions.

H.H. Lee, W.-S. Wang / Journal of Sound and Vibration 263 (2003) 743–774 763



interactions corresponding to the dimensionless wave frequency. With respect to the increase of
the mass, the response amplitude is basically increased, particularly for the case of ignoring the
tether–wave interactions, while the resonant frequency moves to the low value range. It is known
that the increase of the platform mass will reduce the system frequency and result in the increase
of the initial draft, which will reduce the equivalent stiffness and then increase the response
magnitude. However, when the tether–wave interaction is taken into consideration, the damping
due to tether drag becomes more obvious corresponding to the increase of the structure mass and
thus mitigates the mass effect on the amplitude of surge motion.

4.3. Influence of the water depth on the twin-platform motion

The influence of the water depth on the drag surge motion for the twin-platform system was
studied and further compared with the motion without tether–wave interactions. A twin-platform

Fig. 9. The dragged surge motion for the twin-platform system with respect to the draft of the platform. (a) The

reflection coefficient corresponding to the wave frequency. (b) The motion comparison between the platforms with and

without tether–wave interactions.
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structural system of 4.0m dimension for each platform was analyzed when the water depth
of the location was varied from 10.0 to 50.0m. Fig. 11(a) shows the amplitude of the drag surge
motion of the platform corresponding to the period of the incident wave and (b) is a comparison
between the platform with and without considering the tether–wave interactions. It was found
that taking into consideration of the tether–wave interactions, the platform motion was greatly
reduced, particularly for locations in the deeper water, and as shown in Fig. 11(a) the water
depth seems to influence the resonant period rather than the vibration amplitude. Corresponding
to the increase of the water depth, the resonant period of the response was increased for platforms
both with and without tether–wave interaction effect. It is clear that, for the platform without
considering the tether drag effect, the increase of the water depth would lengthen the tension-leg
and then decrease the equivalent stiffness of the system if the dimension and material of the
tether remained the same. Once the stiffness of the system reduced, both the amplitude and the
resonant period of the response then, increased. However, when the tether–wave interaction was
taken into account, the vibration of the lengthened tether would consume more energy input from
the waves and thus might reduce the vibration of the platform as was shown in the comparison of
Fig. 11(b).

4.4. Seiching phenomenon for the twin-platform system

An interesting phenomenon similar to the water oscillations in a basin was observed for the
tension-leg twin-platform structural system, where the incident waves reflect in between two
platforms of the system. For the scattering problem when the spacing between two platforms is
one-half times the incident wavelength, water oscillation occurs between these two platforms. As
shown in Fig. 12 the dot-line is the elevation of the water surface near the side face of the platform
when the twin-platform structure stays still, where the water oscillates corresponding to
2klDnp; n ¼ 1; 2; 3::: and the spacing of two platforms, 2 l, is about one-half times that of the

Fig. 10. The comparison for dimensionless amplitude of the surge motion between the platforms with and without

tether–wave interactions with respect to the variation of the platform mass.
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wavelength. While a solid line represents the water oscillation when the drag surge motion of the
twin platform was taken into account, it shows that the significant peaks of the water oscillation
occur around 2kl ¼ np; n ¼ 2; 4; 6:::: It was found that the peaks of water oscillation
corresponding to 2kl ¼ np; n ¼ 1; 3; 5::: become insignificant when these two platforms are in a
drag surge motion.
The dimensional effect of the twin-platform system on the water oscillation was further

studied. As also shown Fig. 12(a) and (b) shows the water oscillation between two platforms
when the dimension of each single platform was varied from 2 to 4m while the spacing
between them remained unchanged. It is found that with respect to the increase of the platform
dimension, the oscillation seems to be more significant when 2kl is in a lower range for both cases
with and without platform motion. However, within a higher range of 2kl such that the
wavelength is shorter, the water oscillations associated with platform motions seem to be less
significant due to the better shielding effect on the short waves for platforms with larger
dimensions.

Fig. 11. The dragged surge motion for the twin-platform system with respect to the water depth h. (a) The

dimensionless amplitude of the dragged surge motion corresponding to the wave period. (b) The motion comparison

between the platforms with and without tether–wave interactions.
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5. Conclusions

In this study, a set of equations and corresponding boundary conditions to describe the motion
of a twin-platform system with pre-tension tethers subjected to multi-interactions among waves,
platform structure and tension-leg tethers were derived. The corresponding analytical solutions
of close form were obtained and presented as an infinite series for the dynamic behavior of
the platform. The solution was also demonstrated in the numerical examples in terms of the
amplitude of the platform surge motion and the reflection and transmission coefficient. The
influence from parameters of the structural dimension and the water depth was examined and
discussed. As was illustrated in the figures for the analytical results, it is concluded that this
analytical solution of infinite series form is convergent and consistent with the single-platform
solution.

Fig. 12. Comparison of the water oscillations corresponding to 2kl with and without considering the drag motion of the

platform. (a) The width of each platform is 2m, (b) 4m.
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In the comparisons for the platform responses with and without considering the tether–wave
interactions it showed that the tether–wave interactions would significantly reduce the responses
in general. However, when the parameters of the platform or wave or water depth varied, the
interaction effect was influenced. Among the parameters of twin–platform system, similar to
single-platform system, the interaction effect is very significant for platform with small draft or
small dimension. The tether–wave interaction effect is also more obvious when the platform mass
is larger or when the location of water is deeper. However, when the draft or dimension of the
platform is large the interaction effect between the tethers and waves becomes gradually
insignificant. The influence of the variation of spacing between two single platforms of a twin-
platform system seems to be less significant on the interaction effect than the case without tether–
wave interaction. Therefore, it is concluded that for the twin-platform system with smaller
dimension or smaller draft or larger mass or platforms located in deeper water, the analysis
without taking account for the wave–tether interaction effect tends to overestimate the platform
responses no matter what the spacing between two platforms is.
A phenomenon similar to the water oscillations in a basin was also observed for this twin-

platform structural system as incident waves reflect in between two platforms of the system. In the
scattering problem, the resonant water oscillation occurs when the spacing between two platforms
is one-half times the incident wavelength. When the drag surge motion of the twin platform was
taken into account it shows that the significant peaks of the water oscillation between platforms
occur when the spacing of two platforms is about the multiple times of the wavelength.
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Appendix A

KBC (scattering problem) on x ¼ �l � b:

Ka ZaZah i
cosKah

AIsa � i
1

l þ b
ZII1Zah id

�
AIIsP1 þ

XN
j¼2

�1ð Þj�1KIIjZIIjZ
d
a

� �AIIsPj þ e�KIIjð2lþbÞAIIsNj


 ��
¼ da1eK1ðlþbÞK1 Z1Z1h i

cos K1hð Þ
Ai: ðA:1Þ

DBC (Scattering Problem) on x ¼ �l � b:

� i
XN
j¼1

ZIIaZj

� �d

cos Kjh

 �AIsj � ZIIaZIIah id 1� da1ð Þ �1ð Þa�1�da1

� 	�
AIIsPa

þ 1� da1ð Þ �1ð Þa�1þda1
� 	

e�KIIað2lþbÞAIIsNa
�
¼ ieK1ðlþbÞ ZIIaZ1h id

cos K1hð Þ
Ai: ðA:2Þ
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KBC (scattering problem) on x ¼ �l:

� i
ZII1Zah id

l þ b
AIIsP1 � i

XN
j¼2

�1ð Þj�1
�

KIIj ZIIjZa
� �d �e�KIIjb



AIIsPj

þ e�2KIIj lAIIsNj

�	
þ

Ka ZaZah i
cos Kahð Þ

ð�AIIIsPa þ e�2KalAIIIsNaÞ ¼ 0: ðA:3Þ

DBC (scattering problem) on x ¼ �l:

ZIIaZIIah id 1� da1ð Þ �1ð Þa�1� l=l þ b

 �

da1
� 	�

e�KIIabAIIsPa þ 1� da1ð Þ �1ð Þa�1þda1
� 	

� e�2KIIalAIIsNa
�
þ i

XN
j¼1

ZIIaZj

� �d

cos Kjh

 � AIIIsPj þ e�2KjlAIIIsNj


 �
¼ 0: ðA:4Þ

KBC (scattering problem) on x ¼ l:

Ka ZaZah i
cos Kahð Þ

ð�e�2KalAIIIsPa þ AIIIsNaÞ � i
ZII1Zah id

l þ b
AIVsP1

� i
XN
j¼2

ð�1Þj�1KIIj ZIIjZa
� �d �e�2KIIj lAIVsPj þ e�KiijbAIVsNj


 �h i
¼ 0: ðA:5Þ

DBC (scattering problem) on x ¼ l:

i
XN
j¼1

ZIIaZj

� �d

cos Kjh

 � e�2KjlAIIIsPj þ AIIIsNj


 �
þ ZIIaZIIah id 1� da1ð Þ �1ð Þa�1þ l=l þ b


 �
da1

� 	�
� e�2KIIalAIVsPa þ 1� da1ð Þ �1ð Þa�1þda1

� 	
e�KIIabAIVsNa

�
¼ 0: ðA:6Þ

KBC (scattering problem) on x ¼ l þ b:

i
ZII1Zah id

l þ b
AIVsP1 þ i

XN
j¼2

ð�1Þj�1KIIj ZIIjZa
� �d �e�KIIjð2lþbÞ


AIVsPjþAIVsNj

�h i

þ
Ka ZaZah i
cos Kahð Þ

AVsa ¼ 0: ðA:7Þ

DBC (scattering problem) on x ¼ l þ b:

ZIIaZIIah id 1� da1ð Þ �1ð Þa�1þda1
� 	�

e�KIIað2lþbÞAIVsPa

þ 1� da1ð Þ �1ð Þa�1þda1
� 	

AIVsNa
�
þ i

XN
j¼1

ZIIaZj

� �d

cos Kjh

 �AVsj ¼ 0; ðA:8Þ

where d is the Kronecker delta and notations Z�Z�h i� are defined as Eqs. (D.1)–(D.3) in
Appendix D.
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KBC (radiation problem) on x ¼ �l � b:

Ka ZaZah i
cosKah

AIwa � i
1

l þ b
ZII1Zah idAIIwP1

� i
XN
j¼2

�1ð Þj�1KIIj ZIIjZa
� �d �AIIwPj þ e�KIIjð2lþbÞAIIwNj


 �h i
�
is2

g
Z0

a

� �
S ¼ 0: ðA:9Þ

DBC (radiation problem) on x ¼ �l � b:

� i
XN
j¼1

ZIIaZj

� �d

cos Kjh

 �AIwj � ZIIaZIIah id 1� da1ð Þ �1ð Þa�1�da1

� 	�
AIIwPa

þ 1� da1ð Þ �1ð Þa�1þda1
� 	

e�KIIað2lþbÞAIIwNa
�
¼ 0: ðA:10Þ

KBC (radiation problem) on x ¼ �l:

� i
ZII1Zah id

l þ b
AIIwP1 � i

XN
j¼2

�1ð Þj�1
�

KIIj ZIIjZa
� �d �e�KIIjb



AIIwPjþe�2KIIj lAIIwNj

�	

þ
Ka ZaZah i
cos Kahð Þ

�AIIIwa þ e�2KalAIIIwNa

 �

�
is2

g
Z0

a

� �
S ¼ 0: ðA:11Þ

DBC (radiation problem) on x ¼ �l:

ZIIaZIIah ide�KIIabAIIwPa þ 1� da1ð Þ �1ð Þa�1� l=l þ b

 �

da1
� 	

e�KIIabAIIwPa
�

þ 1� da1ð Þ �1ð Þa�1þda1
� 	

e�2KIIalAIIwNa
�
þ i

XN
j¼1

ZIIaZj

� �d

cos Kjh

 � AIIIwPj þ e�2KjlAIIIwNj


 �
¼ 0: ðA:12Þ

KBC (radiation problem) on x ¼ l:

Ka ZaZah i
cos Kahð Þ

�e�2KalAIIIwPa þ AIIIwNa

 �

� i
ZII1Zah id

l þ b
AIIwP1

� i
XN
j¼2

�1ð Þj�1KIIj ZIIjZa
� �d �e�2KIIj lAIVwPj þ e�KIIjbAIVwNj


 �h i
�
is2

g
Z0

a

� �
S ¼ 0: ðA:13Þ

DBC (radiation problem) on x ¼ l:

i
XN
j¼1

ZIIaZj

� �d

cosðKjhÞ
e�2KjlAIIIwPj þ AIIIwNj


 �
þ ZIIaZIIah id 1� da1ð Þ �1ð Þa�1þ l=l þ 2b


 �
da1

� 	�
� e�2KIIalAIVwPa þ 1� da1ð Þ �1ð Þa�1þda1

� 	
e�KIIabAIVwNa

�
¼ 0: ðA:14Þ

KBC (radiation problem) on x ¼ l þ b:

i
ZII1Zah id

l þ b
AIVwP1 þ i

XN
j¼2

�1ð Þj�1
�

KIIj ZIIjZa
� �d �e�KIIjð2lþbÞ


AIVwPj

þ AIVwNj

�	
þ

Ka ZaZah i
cos Kahð Þ

AVwa þ
is2

g
Z0

a

� �
S ¼ 0: ðA:15Þ
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DBC (radiation problem) on x ¼ l þ b:

ZIIaZIIah id 1� da1ð Þ �1ð Þa�1þda1
� 	

e�KIIað2lþbÞAIVwPa
�

þ 1� da1ð Þ �1ð Þa�1þda1
� 	

AIVwNa þ i
XN
j¼1

ZIIaZj

� �d

cos Kjh

 �AVwj ¼ 0; ðA:16Þ

where again the notations of Z0
j

D E
and Z�Z�h i� are defined in Appendix D.

Appendix B

a ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
1

Tn
s2 r	 þ 0:25prwD2 Cm � 1ð Þ
� 	

þ isðC þ R		
d1rwDsÞ

� �r
; ðB:1Þ

a	 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
1

Tn
s2 r	 þ 0:25prwD2 Cm � 1ð Þ
� 	

þ isðC þ R		
d2rwDsÞ

� �r
; ðB:2Þ

C1 ¼
1

eaðh�dÞ � e�aðh�dÞ eah S �
XN
n¼1

an cosKIIn h � dð Þ

" #
þ ead

XN
n¼1

an

( )
; ðB:3Þ

C	
1 ¼

1

ea	ðh�dÞ � e�a	ðh�dÞ
ea	h S �

XN
n¼1

a	n cosKIIn h � dð Þ

" #
þ ea	d

XN
n¼1

a	
n

( )
; ðB:4Þ

C2 ¼
1

eaðh�dÞ � e�aðh�dÞ e�ah
XN
n¼1

an cosKIIn h � dð Þ � S

" #
� e�ad

XN
n¼1

an

( )
; ðB:5Þ

C	
2 ¼

1

ea	ðh�dÞ � e�a	ðh�dÞ
e�a	h

XN
n¼1

a	
n cosKIIn h � dð Þ � S

" #
� e�a	d

XN
n¼1

a	
n

( )
; ðB:6Þ

a1 ¼
AIIs=wP1ð0:25prwCmD2g þ irwDR		

d1gÞ

l þ bð Þ s2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ isðC þ R		
d1rwDsÞ

� �; ðB:7Þ

a	
1 ¼

AIVs=wP1ð0:25prwCmD2g þ irwDR		
d2gÞ

l þ bð Þ s2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ isðC þ R		
d2rwDsÞ

� �; ðB:8Þ
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an ¼
1

�TnðKIInÞ
2 þ s2 r	 þ 0:25prwD2ðCm � 1Þ

� 	
þ is C þ R		

d1rwDs

 �

� ð0:25prwD2Cmg þ irwDR		
d1gÞð�1Þ

n�1 �KIInAIIs=wPne
� x1þlþbð ÞKIIn þ KIInAIIs=wNne

ðx1�lÞKIIn
� 	

; nX2

ðB:9Þ

a	n ¼
1

�TnðKIInÞ
2 þ s2 r	 þ 0:25prwD2ðCm � 1Þ

� 	
þ is C þ R		

d2rwDs

 �

�ð0:25prwD2Cmg þ irwDR		
d2gÞð�1Þ

n�1 �KIInAIVs=wPne
� x2þlð ÞKIIn þ KIInAIVs=wNne

x2�l�bð ÞKIIn
� 	

; nX2

ðB:10Þ

Appendix C

l1 ¼
C1

a
e�ad � e�ah

 �

þ
�C2

a
ead � eah

 �

þ
XN
n¼1

an

KIIn
sinKIIn h � dð Þ; ðC:1Þ

l2 ¼
C	
1

a	 e�a	d � e�a	h
�  

þ
�C	

2

a	 ea	d � ea	h
�  

þ
XN
n¼1

a	n
KIIn

sinKIIn h � dð Þ; ðC:2Þ

b ¼ rwDs2 0:25pD Cm � 1ð Þ þ iR	
d1

� 	
; ðC:3Þ

b	 ¼ rwDs2 0:25pD Cm � 1ð Þ þ iR	
d2

� 	
; ðC:4Þ

Q ¼
ea d�hð Þ þ e�a d�hð Þ � 2

a½ea h�dð Þ � e�a h�dð Þ�
; ðC:5Þ

Q	 ¼
ea	 d�hð Þ þ e�a	 d�hð Þ � 2

a	½ea	 h�dð Þ � e�a	 h�dð Þ�
; ðC:6Þ

Gn ¼
e�ad � e�ah

a

1

n
�eahBncos KIIn h � dð Þ½ � þ eadBn

� 	
þ

� ead � eah

 �

a

1

n
e�ahBncos KIIn h � dð Þ½ � � e�adBn

� 	
þ
sin KIIn h � dð Þ½ �

KIIn
Bn; ðC:7Þ

G	
n ¼

e�a	d � e�a	h

a	
1

n	
�ea	hB	n cos KIIn h � dð Þ½ � þ ea	dB	n
h i

þ
� ea	d � ea	h
�  

a	
1

n	
e�a	hB	n cos KIIn h � dð Þ½ � � e�a	dB	n
h i

þ
sin KIIn h � dð Þ½ �

KIIn
B	n; nX2 ðC:8Þ
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where

n ¼ ea h�dð Þ � e�a h�dð Þ; n	 ¼ ea	 h�dð Þ � e�a	 h�dð Þ;

Bn ¼
�1ð Þn�1 0:25prW D2Cmg þ irwDR	

d1g
� 	

KIInð Þ

�TnðKIInÞ
2 þ s2 r	 þ 0:25prwD2ðCm � 1Þ

� 	
þ is C þ R	

d1rwDs

 �; nX2

and

B	n ¼
�1ð Þn�1 0:25prW D2Cmg þ irwDR	

d2g
� 	

KIInð Þ

�TnðKIInÞ
2 þ s2 r	 þ 0:25prwD2ðCm � 1Þ

� 	
þ is C þ R	

d2rwDs

 �; nX2;

B1 ¼
0:25prW D2Cmg þ irwDR	

d1g
� 	

cos KII1 h � dð Þ½ �

anbs2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ is C þ R	
d1rwDs


 � 2� ea h�dð Þ � ea d�hð Þ� 	

þ
0:25prW D2Cmg þ irwDR	

d1g
� 	

anbs2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ is C þ R	
d1rwDs


 � 2� ea d�hð Þ � ea h�dð Þ� 	
; ðC:9Þ

B	1 ¼
0:25prW D2Cmg þ irwDR	

d2g
� 	

cos KII1 h � dð Þ½ �

a	n	bs2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ is C þ R	
d2rwDs


 � 2� ea	 h�dð Þ � ea	 d�hð Þ
h i

þ
0:25prW D2Cmg þ irwDR	

d2g
� 	

a	n	bs2 r	 þ 0:25prwD2ðCm � 1Þ
� 	

þ is C þ R	
d2rwDs


 � 2� ea	 d�hð Þ � ea	 h�dð Þ
h i

; ðC:10Þ

Gn ¼ rwDsRd1 �1ð Þn�1 sin KIIn h � dð Þ½ �ig=s; ðC:11Þ

G	
n ¼ rwDsRd2 �1ð Þn�1 sin KIIn h � dð Þ½ �ig=s; nX2: ðC:12Þ

Appendix D

ZjZa
� �

¼
Z 0

�h

cos Kj z þ hð Þ
� 	

cos Ka z þ hð Þ½ � dz

¼
0 if jaa;

h

2
1þ

sinh 2Kahð Þ
2Kah

� �
if j ¼ a;

8><
>: ðD:1Þ
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ZIIjZa
� �d ¼

Z �d

�h

cos KIIjðz þ hÞ
� 	

cos Kaðz þ hÞ½ � dz

¼

h � d

2
1þ

sin 2Kaðh � dÞ½ �
2Kah

� �
; if KIIj ¼ Ka;

1

2

sin ðKIIj þ KaÞðh � dÞ
� 	

KIIj þ Ka
þ
sin ðKIIj � KaÞðh � dÞ

� 	
KIIj � Ka

� �
if KIIjaKa;

8>>><
>>>:

ðD:2Þ

ZIIjZIIa
� �d ¼

Z �d

�h

cos KIIjðz þ hÞ
� 	

cos KIIaðz þ hÞ½ � dz

¼

0 if jaa;

h � d if j ¼ a ¼ 1;

h � d

2
if j ¼ aa1;

8>>><
>>>:

ðD:3Þ

Z0
j

D E
¼
Z 0

�d

cos Kjðz þ hÞ
� 	

dz ¼
1

Kj

sinKjh � sinKjðh � dÞ
� 	

ðD:4Þ
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